Gravatt, Dan

From:

Peterson, Mary

Sent:

Wednesday, October 08, 2014 1:17 PM

To:

Kiefer, Robyn V NWK

Cc:

Slugantz, Lynn; Field, Jeff; Gravatt, Dan

Subject:

Draft powerpoint for Oct 14 CAG

Attachments:

WL-CAG-10-14-14 v 3.pptx

Attached is our draft presentation for the CAG meeting next week. We are still tweaking it internally, but I wanted to give you a chance to review it in advance of our call on Friday. You can provide comments on the call and we can revise it collaboratively.

I am beginning to work on a Q&A, brainstorming questions that this presentation may trigger. I will share that with you as soon as I have a working draft developed. We can discuss that on Friday as well.

Mary P. Peterson, Acting Deputy Director

Office of Public Affairs **EPA Region 7** 11201 Renner Blvd. Lenexa, KS 66219 913-551-7882 - desk 816-398-3945 - mobile

Superfund

30

Key Provisions of CERCLA

(Comprehensive Environmental Response, Compensation and Liability Act)

- ▶ Provides legal authority to respond to a release of:
 - ► A hazardous substance
 - ► Any pollutant or contaminant that may present an imminent and substantial endangerment
- ► Authorizes three types of response actions:
 - ▶ Removal action
 - ▶ Remedial action
 - ▶ Enforcement action

How Are NPL Sites Handled?

Overview of the Remedial Investigation/Feasibility Study Process

- ► RI/FS supports selection of the remedy
- ▶ RI characterizes the site
- ▶ Baseline Risk Assessment (BLRA) characterizes human health risks associated with exposures at the site
- ► FS develops and analyzes remedial action alternatives

On-site stakeholder discussions

Baseline Risk Assessments

- ▶ Purpose evaluate threat with no action
- ▶ National Control Plan (NCP) requirements
 - ▶ Lead agency <u>shall</u> conduct site-specific baseline risk assessment
 - ► Characterize current and potential threats
- Quantification of risks
 - ► Establish acceptable exposure levels
 - ► Help set priorities

Baseline Risk Assessments

- ▶ A Baseline Risk Assessment IS:
 - ▶ An analysis of the potential adverse health effects (current or future) caused by hazardous substance releases from a site in the absence of any actions to control or mitigate these releases (i.e., under an assumption of no action).
- ▶ A Baseline Risk Assessment does NOT:
 - ▶ Link individual illnesses to past chemical exposures
 - ▶ Prove that a specific toxic substance caused an individual's illness

The Risk Assessment Equation

- ▶ Risk = Toxicity x Exposure
- ▶ Risk is a function of toxicity (the inherent ability of a chemical to do harm) and exposure (the amount of chemical that an individual contacts)
- ▶ In the absence of exposure (i.e., a complete exposure pathway), risk is zero

Components of the Baseline Risk Assessment

Data Collection & Evaluation

- ► Collect samples air, water, soil, etc.
- ➤ Sample results reveal the types and amounts of chemicals present at the site
- ▶ Develop a list of contaminants at the site

Exposure Assessment

How much of the chemical are people being exposed to over what period of time?

- Characterize the <u>exposure setting</u>
 - ▶ Physical environment (Urban, rural, parkland, stream, etc.)
 - ▶ Potentially exposed populations
 - ►Who will be exposed?
 - ▶residential, recreation, workers, trespassers
 - ▶adults, children
 - ► How long will people be exposed?
 - ▶ How often will people be exposed?

Exposure Assessment

- ▶ Identify <u>exposure pathways</u>
 - ► Exposure medium (soil, air, water, food)
 - ► How much of each chemical people may be exposed to
 - Exposure routes (ingestion, inhalation, dermal)

From: http://dec.alaska.gov/spar/csp/guidance/humhealth_ra.pdf

Toxicity Assessment

Is the chemical harmful to humans?
What amount of injury is this level of exposure likely to cause?

- ▶ Hazard Identification
 - ▶ Determine if chemical can cause adverse health effect
 - ▶ Is adverse health effect likely to occur in humans
 - ▶ Cancer and noncancer effects are evaluated separately

Toxicity Assessment

- ▶ Dose-Response Assessment
 - Quantifies the relationship between exposure and adverse health effects
 - ▶ Cancer Effects
 - ▶ Assume there are no exposures that have "zero risk"
 - ▶ Estimate the probability of cancer developing
 - ▶ Noncancer Effects
 - ► Typically become more severe as exposure to a chemical increases
 - ► Threshold values developed for noncancer causing chemicals

Risk Characterization

What is the extra risk to human health caused by this amount of exposure to this chemical/chemicals?

- Integrate results of the data collection & evaluation, exposure assessment, and toxicity assessment
- Quantify the excess individual lifetime cancer risk
 - ► Cancer risk is expressed as a probability (1 in 10,000 or 1E-04 or 0.0001)
 - ▶ Superfund manages cancer risk within a target risk range of 1E-06 to 1E-04
- Quantify the noncancer hazard quotient (HQ)
 - Compare exposure or intake to the dose that is unlikely to cause adverse health effects
 - A hazard quotient is not a probability
 - ▶ HQ > 1 indicates the potential exists for adverse health effects
- Assess and Present Uncertainty

Carcinogenic Risk Range: Triggering Action

- ► Compare quantified carcinogenic risks to the target risk range
 - ▶ Risks that exceed 1.0⁻⁴
 - Risks that fall within the target range
 - ▶ Risks that are lower than 10-6

Noncancer Hazard Quotient (HQ)

- ▶ Is expressed as a ratio
- ▶ Indicates likelihood of adverse health effects
- ▶ Is not a statistical probability

$$HQ = \left(\frac{\text{Exposure level}}{\text{Reference dose}}\right)$$

- ▶ Operable Unit 1 consists of:
 - ▶Two localized areas Areas 1 and 2
 - ▶Ford Property

Objectives

- ► Estimate potential health risks associated with the site if no cleanup action was taken
- ▶ Identify the areas, environmental media, and contaminants that pose the primary human health concerns
- ▶ Identify any existing data gaps so that additional information can be collected to support cleanup decisions
- ▶ Provide a baseline for comparing the protectiveness of cleanup alternatives in the Feasibility Study

- ▶ Data Collection and Evaluation
 - ▶ Data for OU1 were evaluated to establish
 - 1. Detected chemicals that are site-related
 - 2. Data that are of sufficient quality for use in the risk assessment
 - ▶ Contaminants of Potential Concern
 - ▶ Radiological: uranium-238, uranium-235, thorium-232, and associated decay products (U-234, Th-230, Ra-226, Pb-210, Pa-231)
 - ▶ Nonradiological: arsenic, aroclor-1254 (Area 1); arsenic, lead, uranium, and aroclor 1254 (Area 2)

- ▶ Contaminants of Potential Concern
 - ▶Radiological: uranium-238, uranium-235, thorium-232, and associated decay products (uranium-234, thorium-230, radium-226, lead-210, protactinium-231)
 - ►Nonradiological: arsenic, aroclor-1254 (Area 1); arsenic, lead, uranium, and aroclor 1254 (Area 2)

- Exposure Assessment
 - ► Routes of Exposure
 - ▶ External radiation from contaminated soil
 - ▶ Inhalation of dust and gas
 - ▶ Dermal contact with contaminated soil
 - ▶ Incidental Ingestion of soil
 - ▶ Potential Receptors
 - ► Current Use
 - ► Groundskeeper Working adjacent to OU-1
 - ► Groundskeeper Ford Property
 - ▶ Future Use
 - ► Groundskeeper Working on OU-1
 - ► Groundskeeper Ford Property
 - ▶ User of a building adjacent to Areas 1 and 2 who uses areas for parking
 - ► Outdoor Storage Yard Worker

- ► Potential Receptors
 - ► Current Use
 - ▶ Groundskeeper Working adjacent to OU-1
 - ► Groundskeeper Ford Property
 - ▶ Future Use
 - ► Groundskeeper Working on OU-1
 - ► Groundskeeper Ford Property
 - ▶ User of a building adjacent to Areas 1 and 2 who uses areas for parking
 - ▶ Outdoor Storage Yard Worker

- ► Toxicity Assessment
 - ► Hazard Identification
 - ▶ Dose-Response Assessment
 - ► Carcinogenic Slope Factors
 - ►Noncarcinogen Reference Doses

- ▶ Risk Characterization
 - ▶Health Risks Under Current Conditions
 - ►All receptor scenarios produce risks that are within the target risk range of 1E-06 to 1E-04

- ▶ Health Risks Under Future Conditions
 - ▶ Radionuclides
 - ► Calculated risks from radiological COPCs for some potential future exposure scenarios are at the upper end of, or exceed the target risk range of 1E-06 to 1E-04
 - ▶Non-Radionuclides
 - ► Non-radiological contaminants are not expected to cause unacceptable risks for the scenarios evaluated.

OU-1, Area 1 (Current Scenario)

Potential Receptor Location

Radionuclide Cancer Risk

Groundskeeper

Adjacent to Area 1 1E-05

OU-1, Area 1 (Future Scenario)

Radionuclide Potential Location Receptor Cancer Risk Groundskeeper On Area 1 6E-05 Adjacent 1E-05 Area 1 **Building User** (Paved and used for parking) Storage Yard 1E-04 On Area 1 Worker

*Target Risk Range is 1E-06 to 1E-04

OU-1, Ford Property (Current Scenario)

Potential

Location

Radionuclide

Receptor

Cancer Risk

Groundskeeper

On Area

6E-07

OU-1, Ford Property (Future Scenario)

Potential Receptor Location

Radionuclide

Cancer Risk

Groundskeeper On Area 6E-07

*Target Risk Range is 1E-06 to 1E-04

OU-1, Area 2 (Current Scenario)

Potential Receptor Location

Radionuclide Cancer Risk

Groundskeeper

Adjacent to Area 2 4E-05

OU-1, Area 2 (Future Scenario)

Radionuclide Potential Location Receptor Cancer Risk Groundskeeper On Area 2 2E-04 Adjacent 4E-05 Area 2 **Building User** (Paved and used for parking) Storage Yard On Area 2 4E-04 Worker

*Target Risk Range is 1E-06 to 1E-04

Questions or Comments?

Contact: Ben Washburn
EPA Region 7 Office of Public Affairs
Lenexa, Kansas
913-551-7364 washburn.ben@epa.gov

